

Purpie Overview

Purpie is an open-source platform that brings together many different solutions, to create a space focused on video-oriented communication and content sharing. If you are interested in hearing more, you can continue with the page below;

	What is Purpie? [https://docs.purpie.org/en/latest/01.what_is_purpie.html]

If you’d like to give it a go yourself, you can try our Quick Setup guide in the page below, of if you are a developer, you can use Manual Setup.

	Quick Start [https://docs.purpie.org/en/latest/06.quick_setup.html]

	Manual Setup [https://docs.purpie.org/en/latest/07.manual_setup.html]

If you are looking to contribute to this project, you may start with a look at our Contribution Guide and License.

	Contribution Guide [https://docs.purpie.org/en/latest/10.contribution.html]

	License [https://docs.purpie.org/en/latest/11.license.html]

If this document does not answer your questions, you can check out FAQs, or join our community.

	License [https://docs.purpie.org/en/latest/12.FAQ.html]

	Community [https://community.octopus.doganbros]

If you’d like to learn more about us, you can visit our website.

	doganbros.com [https://doganbros.com]

What is Purpie?

Purpie is an open source social media solution focusing on video oriented communication and content sharing. Purpie orchestrates various media services and solutions for online meetings, live streamings, on demand video delivery and many more. With an agile and hierarchical way of user interaction and content sharing possibilities, Purpie proposes a robust and flexible solution for various video communication and distribution needs.

Purpie is;

	Unique social media service prioritizing video communication in the first place.

	Resourceful as an orchestrator to integrate and coordinate multiple media solutions and services.

	Open as an open source project to be customizable for various business cases.

	Flexible with its Zones, Channels and Profiles to cover possible use cases.

	Elegant with its look and feel.

Possible Use Cases

Purpie can be used as is or customised for any kind of video based social media needs.

Here are some possible use cases:

	Social media platform;

	For specific business domains such as e-learning, benchmarking etc…

	For local authorities such as municipalities.

	For societies, clubs, religious groups etc…

	To be used by a company internally.

	So on…

	Gaming and entertainment streams.

	Monetizing video content of a video production company.

	Online auctions platform.

	Business matchmaking solution.

	Event management company to organize online events.

	Online health advisory service.

	Online discussion and debating platform.

Design Philosophy

Purpie has hierarchical content management architecture which lies behind Zones and Channels. Like in any membership based solutions, users have their own profile. Adding to this, in Purpie, any user can create multiple Zones and multiple channels in each Zone.

What is a Zone?

A zone is the base for creating channels, which means a channel would always belong to a Zone. Conceptually, Channels having similar contents would exist in the same Zone. This similarity can be based on content type, content source or any other categorization.
Following key points should be in consideration while interacting with Zones:

	Zones can be private or public.

	Users can not share content directly from a Zone.

	Private Zones can only be accessed by the Zone members.

	Public Zones are open to other Purpie users.

	Users can join existing public Zones in Purpie and join Private Zones only through invites.

	A user can create a Channel inside a Zone if they are the Zone owner or if given a role that has permissions to create Channels by the Zone owner.

What is a Channel?

Users can create and share content from a Channel, which is always under a Zone. So, the Channel is where you publish your content and let others view it.

Following key points should be in consideration while interacting with Channels:

	Channels can be private or public.

	Users can share content from a Channel (also from their Profile but we will come to that later).

	Private Channels can only be accessed by the Channel followers.

	Public Channels are open to other Purpie users.

	Users can follow existing public Channels and join private Channels only through invites.

	Users can create content inside a Channel only if they are the Channel owner or if given a role that has permissions to create content by the Channel owner.

What is a Profile?

By default, each user has a profile in Purpie, like it is such in any site having membership functionality Users can add others into their Contacts, which are the only ones who can see the content they publish through their profile. Profiles are very handy if a user does not want to create a Zone or Channel but just wants to share a video content with the people they may know.

Following key points should be in consideration while interacting with Profiles:

	Users can share content from their Profiles only with their Contacts.

	Each user can have a single Profile.

	Users can request to add any other Purpie user to their Contacts.

How Does It Work?

Purpie is an orchestrator which provides effective and robust integration with various media services. Purpie ties up following media solutions and services:

	Jitsi for:

	Online meetings

	Webinars (Large rooms)

	Streaming & recording meetings

	Nginx RTMP Servers for:

	Live and on-demand streaming

	Recording

	Cloud-storage for:

	On demand video delivery

Architecture

[image: Octopus System Architecture]

Quick Setup

Quick Setup guide focuses on an easily configured development environment. In this environment, Purpie, RTMP servers and Jitsi each run in their own containers. An FQDN (Fully Qualified Domain Name) will be required.

Install Docker & Docker Compose

Since all the components will be running in containers, you will need Docker and Docker Compose. You may install Docker by following the guide in this link [https://docs.docker.com/engine/install/].

You can follow this link [https://docs.docker.com/compose/install/] to install Docker Compose.

Download Purpie from GitHub Repository

sudo apt-get install git
git clone https://github.com/doganbros/purpie-docker.git
cd purpie-docker

Configure Purpie

Make a copy of the .env.example named .env. This .env contains environment variables for Jitsi [https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker#configuration] as well as Purpie [https://docs.purpie.org/en/latest/06.manual_setup.html].

Generate SSL Certificates

SSL certificates are required for jitsi, purpie and RTMP servers to work correctly. If you have ssl certificates already, copy them to ./docker/ssl directory. The fullchain certificate should be named as cert.crt where as the private certificate should be named as cert.key.

If you do not have SSL certicates already, run the script below to obtain one.

./docker/ssl-gen.sh

Generate Strong Passwords

To generate secured and strong passwords in the security section options of .env file for Purpie and Jitsi, run the script below.

./gen-passwords.sh

Start Purpie

docker-compose up -d

Rebuilding the Image

Sometimes, especially after an update, you might want to rebuild your image. Doing so would let you build your frontend again.

First, bring your docker containers down;

docker-compose down

Then start them up again with the following command.

docker-compose up --build -d

Setup from Scratch

Manual Setup installs each component individually to maximize control and configurability. All components can be installed into a single machine, provided the machine has an FQDN, and is strong enough to meet the requirements. Please make sure the certificate for the domain includes not only the domain itself, but all its belonging subdomains as well. You may ensure it by using a wildcard like “*.mydomain.com” when procuring the certificate.

Setting Up Purpie

Requirements

	Node.js [https://nodejs.org/en/download/] (>= 10.13.0, except for v13) (Windows Build Tools for Windows systems)

	Yarn [https://yarnpkg.com/en/docs/install]

	NestCli [https://docs.nestjs.com/cli/overview]

	Postgres [https://www.postgresql.org/]

Getting Started

git clone https://github.com/doganbros/purpie # Clone Repository
cd purpie

Install dependencies with

yarn install

Set Environment Variables Into .env File

You may configure the environment by making a copy of the boilerplate provided. The functionality of each environment variable is documented within the .env.example file.

cp .env.example .env # Then make changes to the boilerplate provided

You can find a brief coverage of most prominent variables below.

	Variable

	Example

	Explanation

	NODE_ENV

	development

	The environment your application runs in.

	SERVER_PORT

	8000

	The port the backend server is running on.

	PORT

	3000

	The port the frontend serves from.

	HOST

	purpie.io

	Host address for backend and frontend.

	PURPIE_API_KEY

	YOUR_API_KEY

	Key for access API directly with PURPIE_API_SECRET

	PURPIE_API_SECRET

	YOUR_API_SECRET

	Secret for access API directly with PURPIE_API_KEY

	RTMP_INGRESS_URL

	ingress.yourrtmp.com

	The RTMP server Purpie pushes your streams to.

	RTMP_EGRESS_URL

	egress.yourrtmp.com

	The RTMP server Purpie pulls steams from to display.

Creating Postgres Database

Please follow the steps below to get a development Postgres server running. The easiest way to use docker [https://www.docker.com/]. If you have running Postgres database server you can skip these steps and simply create an Purpie database.

	Make sure you have docker installed on your computer. If you do not have docker already on your computer, Go to this link [https://www.docker.com/get-started/], choose your platform and click download. Follow the simple steps to get docker installed on your computer.

	Open your terminal (command prompt or preferably powershell on windows).

	Enter the command docker run --name purpie-dev -e POSTGRES_PASSWORD=$YOUR_POSTGRES_PASSWORD -p 5432:5432 -d postgres. Postgres docker image will be downloaded and Postgres Docker container with the name purpie-dev will up and serve from port 5432 after this command.

	Run docker exec -it purpie-dev psql -U postgres to connect your Postgres database.

	Inside the docker container, run CREATE DATABASE 'purpie'; to create your Purpie database.

	Run \q to quit from Psql and Docker container.

	Remember to update DB_USER, DB_PASSWORD, DB_DATABASE and DB_HOST .env variables to your database user name, database password database name, and database host respectively.

Running Purpie

yarn server:start:dev # Runs backend side in dev mode
yarn start:server # Runs backend in production
yarn start:web # Runs frontend side

You may refer to this sample NGINX config [https://github.com/doganbros/purpie/tree/master/external/nginx] to set up your Purpie web server.

Setting up Jitsi

Installing Jitsi with JWT support

Purpie mmakes use of Jitsi for video streaming and live meeting purposes. It requires a Jitsi installation with JWT token support. You can refer to this document [https://doganbros.com/index.php/jitsi/jitsi-installation-with-jwt-support-on-ubuntu-18-04-lts/] by us to install Jitsi. Remember to update the .env variable by setting JWT_APP_ID’s value to YOUR_APP_ID, JITSI_SECRET to YOUR_SECRET and JITSI_DOMAIN to the domain where you set up jitsi.

Installing Purpie Jitsi Module

This module is a React Module that applies on top of Jitsi to provide visual and functional differentiations. To avoid issues regarding version mismatch, start with the customized Jitsi repo below;

git clone https://github.com/doganbros/purpie-jitsi-meet.git
cd purpie-jitsi-meet

The module is included in the package.json file within the repository. Therefore, you are able to simply follow the promtps as shown;

npm install
export WEBPACK_DEV_SERVER_PROXY_TARGET=https://yourdomain.com
make

At this point, your customized Jitsi is built and ready to serve. Make sure to edit the NGINX configuration accordingly to make use of your new directory.

Integrating Jitsi with Purpie

	This .lua module for Jitsi Meet manages the integration between purpie and Jitsi. It enables Jitsi to send reports to Purpie. To enable it, follow the instructions below.

cp ./external/prosody-modules/mod_purpie.lua /usr/share/jitsi-meet/prosody-plugins

Configuring Prosody

	Edit your prosody configuration at /etc/prosody/conf.d/your.domain.com.cfg.lua, and add the following lines.

purpieApiKey = "yourAPIkey";
purpieApiSecret = "yourAPIsecret";
purpieAPIBaseUrl = "https://your.baseAPI.url";

	In the same file, add purpie to the list of enabled modules of the conference component like below;

Component "conference.meet.doganbros.com" "muc"
 restrict_room_creation = true
 storage = "memory"
 modules_enabled = {
 "muc_meeting_id";
 "muc_domain_mapper";
 "polls";
 "purpie";
 "token_verification";
 }
 admins = { "focus@auth.meet.doganbros.com" }
 muc_room_locking = false
 muc_room_default_public_jids = true

Installing Jibri

To install Jibri you can follow this tutorial [https://community.jitsi.org/t/tutorial-how-to-install-the-new-jibri/88861].

Customizing the Finalize Script

	Find the following in your /etc/jitsi/jibri/jibri.conf file, and replace path with /srv/finalize/purpie-finalize.sh

jibri {
 recording {
 finalize-script = <path>
 }
}

	Copy the included finalize.sh file to your finalize script directory. This .sh file runs upon the completion of recording, and both uploads the recorded file to an S3 bucket, and manages Jibri’s integration with Purpie.

cp {./external/jibri/purpie-finalize.conf, purpie-finalize.sh} /srv/finalize

	Edit /srv/finalize/purpie-finalize.conf accordingly, and restart Jibri.

Setting up the Ingress RTMP servers

For Purpie, you will need at least one ingress server, and as many additional egress servers as you need for ease of autoscalability. To install NGINX rtmp server, you can follow the guide in this page [https://docs.nginx.com/nginx/admin-guide/dynamic-modules/rtmp/]. Remember to update the RTMP_INGRESS_URL and RTMP_EGRESS_URL .env variables to your ingress and egress server url respectively.

Integrating the RTMP server with Purpie

	Head into the RTMP server, and use the following to copy the required scripts. sample-nginx.conf contains a working example for an RTMP server, who calls upon purpie.sh in its workflow. purpie.sh is the script that maintains the integration between the RTMP server and Purpie. purpie-sh.conf contains customizable variables for the script.

mkdir /home/purpie
cp {./external/rtmp/purpie.sh, ./external/rtmp/purpie-sh.conf} /home/purpie
cp ./external/rtmp/sample-nginx.conf /etc/nginx

	Navigate to /home/purpie and edit the contents of purpie-sh.conf accordingly. Then restart nginx.

systemctl restart nginx

Testing Purpie

After your setup of Purpie is complete, here are a few steps you can test on your installation.

Testing Meetings in a Development Environment

We provide https://meet.purpie.io as a server that handles all meetings for development. Currently every developer must connect to this server in order to test how meeting is created, video is streamed etc. Since there is only one server, there is a need to identify each development environment while making requests to server in order to create a meeting. To set up your local environment to support this flow, follow the steps below.

	Set up your jitsi domain env variable to point to the jitsi server (JITSI_DOMAIN=https://meet.purpie.io).

	Set up a local tunnel to your localhost so that the server can make the request to you. Use the command npx localtunnel –port 8000 –subdomain yourpreferredsubdomain where yourpreferredsubdomain would be a unique address that will be used to identify you local server later.

	Add the environment variable MEETING_HOST=yourpreferredsubdomain.loca.lt to your .env file. This is the endpoint the jitsi server will be making requests to. Note that you shouldn’t include (https://)

	Make sure you have the correct JITSI_SECRET, OCTOPUS_API_KEY, OCTOPUS_API_SECRET and JWT_APP_ID env variables set already. If you don’t have these already, contact the octopus channel for that.

	Add the environment variable REACT_APP_STREAMING_URL=https://egress.purpie.io:1980/hls so that streaming works correctly.

	You are all set! You can now create, record and stream a meeting using the https://meet.purpie.io server.

Testing Recording and Streaming in a Development Environment

To stream meetings using the https://meet.purpie.io server, follow the instructions below:

	Create a meeting

	Click on the three dots, and on start live stream

	A window will appear, enter rtmp://ingress.purpie.io/live/<meeting-slug>?uid=1 as a live stream key. (Replace <meeting-slug> with the real meeting slug).

	The stream should start in few minutes

Road Map

2023, Q1

	Alpha Release

	Superuser administration

	Roles and permissions

	User management

2023, Q2

	Statistics

	Webinar App

	One-on-one messaging

	Voice chat

2023, Q3

	Open API

	Streaming Studio App

	Purpie Mobile (Alpha Release)

	Multi-language Support

2023, Q4

	Beta Release

	Purpie Mobile (Beta Release)

Developer Guide

This document focuses frontend and backend development of Purpie project and gives information about Purpie Tech Stack.

Frontend

Requirements

	Node.js [https://nodejs.org/en/download/]. (>= 10.13.0, except for v13) (Windows Build Tools for Windows systems)

	Yarn [https://classic.yarnpkg.com/en/docs/install].

Clone Repository

git clone https://github.com/doganbros/purpie
cd purpie

Install dependencies

yarn install

Set environment variables into .env file:

cp .env.example .env

Then make changes to the boilerplate provided

Setting web server and routing

If Purpie is installed on your local computer, you will need to add the following line to your hosts file. The hosts file for Unix based system including MacOs is /etc/hosts where as on Windows, it is C:\windows\system32\drivers\etc\hosts.

127.0.0.1 purpie.localhost

Run project

yarn start

Try Purpie

	Visit http://purpie.localhost:3000 (3000 is the default port) and create your super admin user.

Backend

Requirements

	Node.js [https://nodejs.org/en/download/]. (>= 10.13.0, except for v13) (Windows Build Tools for Windows systems)

	Yarn [https://classic.yarnpkg.com/en/docs/install].

	NestCli [https://docs.nestjs.com/cli/overview].

	Postgress [https://www.postgresql.org/download/].

First steps are same with fronted setup.

Create Postgres database

Please follow the steps below to get a development Postgres server running. The easiest way to use docker [https://www.docker.com]. If you have running Postgres database server you can skip these steps and simply create an Purpie database.

	Make sure you have docker installed on your computer. If you do not have docker already on your computer, Go to https://www.docker.com/get-started, choose your platform and click download. Follow the simple steps to get docker installed on your computer.

	Open your terminal (command prompt or preferably powershell on windows).

	Enter the command

docker run --name purpie-postgres-dev -e POSTGRES_PASSWORD=YOUR_DB_PASSWORD -p 5432:5432 -d postgres

	Postgres docker image will be downloaded and Postgres Docker container with the name purpie-postgres-dev will up and serve from port 5432 after this command.

	To connect your Postgres database.

docker exec -it purpie-postgres-dev psql -U postgres

	To create your Purpie database.

CREATE DATABASE purpie;

	Update your .env file with YOUR_DB_PASSWORD .

	Run \q to quit from Psql and Docker container.

Run project

To run backend server in production

yarn start:server

To run backend server in development

yarn start:server:dev

API Testing

Visit http://purpie.localhost:8000/swagger/ to try out some backend APIs.

Software Spec

Frontend Features

	Typescript [https://www.typescriptlang.org/] (Strict Mode)

	ESNext

	Airbnb Coding Style Guide [https://github.com/airbnb/javascript]

	Prettier [https://prettier.io/]

	eslint [http://eslint.org]

	yarn [https://yarnpkg.com] is used for package management

	React [https://reactjs.org/] is the main framework (with hooks)

	React Router [https://reactrouter.com/] is used for client side
routing

	Redux [https://redux.js.org/] is used for managing application
state

	Grommet [https://v2.grommet.io/] is the main css framework

Backend Features

	Typescript [https://www.typescriptlang.org/] (Strict Mode)

	Airbnb Coding Style Guide [https://github.com/airbnb/javascript]

	ESNext

	CORS enabled

	yarn [https://yarnpkg.com] for package management

	Handlebars [https://handlebarsjs.com/] for rendering email
templates

	NestJS [https://nestjs.com/] is the main framework

	Postgresql [https://www.postgresql.org/] is the database used

	TypeORM [https://typeorm.io] is the database ORM used

	Class Validator [https://github.com/typestack/class-validator] is
used to validate request body.

	helmet [https://github.com/helmetjs/helmet] is used to set http
headers correctly.

	dotenv [https://github.com/rolodato/dotenv-safe] is used to load
.env variables

	compression [https://github.com/expressjs/compression]

	eslint [http://eslint.org]

	morgan [https://github.com/expressjs/morgan]

	Swagger [https://swagger.io/]

	Monitoring with pm2 [https://github.com/Unitech/pm2]

Open Source Technologies used

	Jitsi [https://jitsi.org]

Requirements

	Node.js [https://nodejs.org/en/download/] (>= 10.13.0, except for
v13)

	Yarn [https://yarnpkg.com/en/docs/install]

Glossary

	🏠 represents client side

	🖥️ represents server side

Architecture

This is a single page web application, that is it handles routing at the
client-side without the need to refresh the entire page. All http
requests are done using Asynchronous Javascript and XML (AJAX). The
data exchange format used between this app and the server is JSON.

Programming Languages

HTML [https://en.wikipedia.org/wiki/HTML] 🏠

HTML is rarely used in this app. It is primarily used to setup the
main index file that is responsible for loading the main javasript of
the app. It loads the css and display the initial title of the app.

TypeScript [https://www.typescriptlang.org/] 🏠🖥️

This app uses no Javascript (Although it compiles to javascript).
Typescript is the main programming language used on the server and
for building the user interface.

Frameworks and Libraries

NestJS [https://nestjs.com/] 🖥️

Nestjs is a progressive Node.js framework for building efficient,
reliable and scalable server-side applications. It works well with
typescript and follows the
SOLID [https://en.wikipedia.org/wiki/SOLID] principle

TypeORM [https://typeorm.io/] 🖥️

TypeORM is a NodeJS database ORM that supports the latest JavaScript
features and provide additional features that helps in developing any
kind of application that uses databases - from small applications with a
few tables to large scale enterprise applications with multiple
databases. It works well with typescript.

OpenAPI (Swagger) [https://docs.nestjs.com/openapi/introduction] 🖥️

The OpenAPI specification is a language-agnostic definition format used
to describe RESTful APIs. Nest provides a dedicated module which allows
generating such a specification by leveraging decorators.

Handlebars [https://handlebarsjs.com/] 🖥️

Handlebars is used to render email templates before they are sent to
clients.

SendGrid [https://sendgrid.com/] 🖥️

SendGrid is the main service used for sending emails.

Class Validator [https://github.com/typestack/class-validator] 🖥️

Allows use of decorator and non-decorator based validation. Internally
uses validator.js to perform validation.

Axios [https://axios-http.com/] 🏠🖥️

Axios is a promise based HTTP client used in this app. All AJAX
requests are handled with axios. Their interceptors really help to
avoid redundancy in most part of the app.

SCSS [https://sass-lang.com/] 🏠

This app uses no CSS (Although it compiles to css in the long run).
SCSS is rearely used in this app. It is used to style a large
portion of the app. SCSS Modules is recommended if SCSS is used.
node-sass is the library responsible for compiling the app’s
scss to css

React [https://reactjs.org/] 🏠

This app uses the latest version of React Framework (Library) in
collaboration with Typescript. JavaScript XML is used to develop
all the components. Only Functional Components are allowed for
writing all React Components.

Grommet [https://v2.grommet.io/] 🏠

Grommet is a React styled-component library that helps in building
responsive and accessible mobile-first projects for the web. Since this
framework provides lots of styled-components, writing scss is often
not required at all. Developers are required to use most of the features
of Grommet without writing lots of scss .

React Router DOM [https://reactrouter.com/web/guides/quick-start] 🏠

React Router (Its DOM binding React Router DOM) is the library
used to for handling all the client side routing of this app. Note
that instead of using the library’s main Link and NavLink
components, AnchorLink and NavLink are used respectively. This is to
make it compatible with the Grommet library. To navigate to other paths
of the app inside a component, the useHistory hook is used. Routing
done in other parts of the app app (especially in a Redux action) uses
the appHistory helper function insead.

Redux [https://redux.js.org/] 🏠

Redux is a predictable state Container for Javascript (Typescript)
Apps. This is the main state management library used in the app. Mostly
states that are shared across multiple components of the app use redux.
Also all network-related states are handled here. react-redux is the
library that helps in binding redux to react. redux-thunk provides
the redux middleware that helps the app to deal with asynchronous
dispatches in redux actions.

React-i18next [https://react.i18next.com//] 🏠

React-i18next is a powerful internationalization framework for React / React Native which is based on i18next. Our goal is to support as many languages as possible with the help of this framework and community.

Development Dependencies

Eslint [https://eslint.org/] 🏠🖥️

Eslint statically analyzes the application code to quickly find
problems. It helps in maintaining the usage of Airbnb coding style guide
and the similarity of code written by different develops at a time. Run
yarn analyze or npm analyze to let eslint analyze and report all
errors made. If you are using editors like vscode please install the
eslint extension to help you in automatically detecting errors.

Prettier [https://prettier.io/] 🏠🖥️

Prettier is an opinionated code formatter that helps the app to
format the code written to comform to the rules of eslint. Run
yarn format or npm format to do a quick format of the entire
app.

Jest [https://jestjs.io/] 🏠🖥️

Jest is a delightful JavaScript Testing Framework with a focus on
simplicity.

NestJS 🖥️

While using nestjs at the server-side, One must follow these guidelines.

	NestJS pattern must be followed strictly. For example controllers
should be used to handle only http requests, services must be used to
generate data or communicate with the database, guards must be used
for securing routes etc.

	controllers and providers should reside in controllers and services
directories respectively.

	Implement global providers if they are needed only. This will help
other developers know from which modules those services are imported
from. Example authentication and exceptions would be needed in the
entire application but zone service wouldn’t.

	the @IsAuthenticated() decorator should be used to validate the
current user’s token. Also permissions could be passed in as
paremeters if they are needed.

	Document the controllers written extensively (using decorators
provided by Nestjs for OpenAPI). This helps other developers to make
requests very easily without reading the source code.

	The built in NestJS exceptions must be used accross the entire
application. The first paramter must be a message about the error.
And the second parameter must be an error code. For example while
generating an error for invalid bearer authentication token, the
example below is used.

throw new UnauthorizedException(
 'You not authorized to use this route',
 'NOT_SIGNED_IN',
);

TypeORM 🖥️

While using TypeORM at the server-side, One must follow these
guidelines.

	The models designed must be relational. That means you must use
OneToOne, ManyToOne, OneToMany or ManyToMany relation
when it is necessary.

	When models, fields, column, etc. are added a migration script must
be written in respect of that. This is because we are not using
syncronization as it not good for production. Note that nestjs
will run pending migrations when the application is booted
automatically.

Guards In This Application and their usage

This section introduces the main guards used in this application

	AuthGuard

The AuthGuard validates the current bearer token passed to the server
when making requests. It sets the payload of the user to
req.user. It also thows an UnauthorizedException exception
when the token is invalid.

	UserZoneGuard

The UserZoneGuard validates the current user’s authorization to the
zone that he/she is requesting. It sets the user zone to
req.userZone. Other permissions can be passed in using the
SetMetadata decorator. It also throws an NotFoundException
exception when the user is not authorized.

Pipes in this application and their usage

This section introduces the main pipes used in this application

	ParseTokenPipe

The ParseTokenPipe is used to parse a JWT. If it succeeds it passes
the payload to the parameter. Otherwise it will throw an
UnauthorizedException.

Decorators in this application and their usage

This section introduces the main decorators used in this application

	IsAuthenticated

The IsAuthenticated decorator wraps over the AuthGuard to avoid
writing lots of boilerplates while passing permissions to the
AuthGuard.

	UserZoneRole

The UserZoneRole decorator wraps over the UserZoneGuard to avoid
writing lots of boilerplates while passing permissions to the it. It
also extends the IsAuthenticated decorators so if you do not need to
specify it while using it on a route.

	UserChannelRole

The UserZoneRole decorator wraps over the UserChannelGuard to avoid
writing lots of boilerplates while passing permissions to the it. It
also extends the IsAuthenticated decorators so if you do not need to
specify it while using it on a route.

	CurrentUser

The CurrentUser decorator is helper to retrieve the current user’s
jwt payload

	CurrentUserZone

The CurrentUserZone decorator is helper to retrieve the current user
zone. Notice that it zoneId or userZoneId must be set as params in
order to retrieve this.

	CurrentUserChannel

The CurrentUserChannel decorator is helper to retrieve the current
user channel. Notice that it channelId or userChannelId must be set
as params in order to retrieve this.

Middlewares Used in this application

This section introduces the main middlewares used in this application.

	PaginationMiddleware

The PaginationMiddleware parses all get requests’ pagination query
paramters. All get requests pass through this middleware. This means
that, the pagination query parameters req.query.limit and
req.query.skip are passed to controllers automatically (Global
middleware for get requests). It can in turn be used in paginating
records. When no values for limit and skip query parameters are
passed by the user, limit is set to a default of 30 and skip is also
set to a default of 0. Limit cannot be greater that 100. The type
PaginationQuery can help in intellisense.

Authentication

This app interacts with a stateless http server. Authentication is
realized by sending a JSON Web Token [https://jwt.io/] (By the way
this is one of my favorite technologies) to the server. The steps for
authenticating users are listed below.

	When it is the first time the user is visiting the app or the
returning user is not authenticated, React Router will redirect the
user to the login page.

	The User will either login or create a new account

	The app sends the authentication information to the server

	If the server successfully authenticates the user, a json web access
token and its refresh token is created on the server and sent as an
http only cookie to the client

	By default the access token only lasts an hour. After this if the
refresh token is still valid, the server will generate a new access
and refresh tokens to the client

	In subsequent requests, the app will send the access token stored in
the cookies to the server to identify the user making the request.

	If the token expires or becomes invalid the user will automatically
be redirected to the login page. Thanks to the axios response
interceptor.

	If the user returning to the app is already authenticated react
router will redirect the user to the main application page.

Authentication persistence through subdomains

Since this app allows users to create subdomains, it needs to persist
authentication through the main domain and subdomains. This is one of
the main reasons why cookies are been used. For cookies to persist
authentication through domains and subdomains, the main domain parameter
supplied while creating them must be valid. One of the rules for its
validity is that it must have at least one dot. Due to this, localhost
will not work. Read this
article [https://medium.com/@emilycoco/working-with-subdomains-locally-and-sharing-cookies-across-them-12b108cf5e43]
to learn more. Even though developers can still use localhost but if
another subdomain is visited, authentication would be required again.
Developers can therefore set a different domain other than localhost in
/etc/host (or C:\Windows\System32\Drivers\etc\hosts for
windows) file. The domain recommended is octopus.localhost. This is
because it allows all subdomains to see the cookie as well. #
Application Structure

├── README.md
├── SOFTWARE-SPEC.md
├── appspec.yml
├── package-lock.json
├── package.json
├── scripts
│ ├── after_install.sh
│ ├── before_install.sh
│ └── start.sh
├── server
│ ├── README.md
│ ├── dist
│ ├── entities
│ │ ├── Channel.entity.ts
│ │ ├── Invitation.entity.ts
│ │ ├── Post.entity.ts
│ │ ├── User.entity.ts
│ │ ├── UserChannel.entity.ts
│ │ ├── UserChannelPermission.entity.ts
│ │ ├── UserZone.entity.ts
│ │ ├── UserZonePermission.entity.ts
│ │ ├── Zone.entity.ts
│ │ ├── base
│ │ ├── data
│ │ └── repositories
│ ├── helpers
│ │ ├── jwt.ts
│ │ └── utils.ts
│ ├── migrations
│ │ └── 1625561314952-InitialMigration.ts
│ ├── ormconfig.ts
│ ├── src
│ │ ├── app.module.ts
│ │ ├── auth
│ │ ├── mail
│ │ ├── main.ts
│ │ ├── typeorm-exception.filter.ts
│ │ ├── utils
│ │ ├── views
│ │ └── zone
│ ├── test
│ │ ├── app.e2e-spec.d.ts
│ │ ├── app.e2e-spec.js
│ │ ├── app.e2e-spec.js.map
│ │ ├── app.e2e-spec.ts
│ │ └── jest-e2e.json
│ ├── tsconfig.build.json
│ ├── tsconfig.json
│ ├── tsconfig.tsbuildinfo
│ └── types
│ ├── Post.ts
│ ├── PaginationQuery.ts
│ ├── UserPayloadRequest.ts
│ └── UserZoneRequest.ts
├── src
│ ├── App.tsx
│ ├── assets
│ │ ├── background.png
│ │ └── logo.png
│ ├── components
│ │ ├── layouts
│ │ └── utils
│ ├── config
 ├──i18n
 │ └── [language].json
│ │ ├── app-config.ts
│ │ └── http.ts
│ ├── helpers
│ │ ├── history.ts
│ │ ├── utils.ts
│ │ └── validators.ts
│ ├── hooks
│ │ └── useTitle.ts
│ ├── index.tsx
│ ├── layers
│ │ ├── meeting
│ │ └── zone
│ ├── models
│ │ ├── form-submit-event.ts
│ │ └── response-error.ts
│ ├── pages
│ │ ├── Private
│ │ └── Public
│ ├── react-app-env.d.ts
│ ├── routes.ts
│ ├── scss
│ │ └── index.scss
│ └── store
│ ├── actions
│ ├── constants
│ ├── reducers
│ ├── services
│ ├── store.ts
│ └── types
└── tsconfig.json

	README.md

This is the main readme file of the application

	package-lock.json

This is automatically generated for any operations where npm modifies
either the node_modules tree, or package.json. It describes the exact
tree that was generated, such that subsequent installs are able to
generate identical trees, regardless of intermediate dependency
updates.

	package.json

Lists all the dependencies, author, version, etc of the app.

	public

This is where the main index.html file that loads the react app
lives.

	server

This is where most backend work is done in this app.

	dist

Typescript compiles to this directory.

	entities

This is directory hosts all the typeorm model definitions. All
typeorm entities must end with .entity.ts

	base

This directory hosts the typeorm models that will be inherited
by other models. For example the RecordEntity defines most
of the repeating fields in records such as id,
createdOn, updatedOn etc.

	data

This directory hosts the default data used by some entities.

	helpers

This directory hosts all the utilities functions of the
application.

	migrations

This directory hosts all the migration scripts used by typeorm. To
create a new migration please use the script
yarn migration:create. NestJS automatically runs all pending
migrations when it is booted. While creating migrations, typeorm
driver must be prefered to raw sql. This helps in migrating to
other databases in the future.

	types

This directory hosts all the utility typescript types used in the
application.

	test

This is the directory that hosts all end-to-end testing scripts.

	src

This is the directory where most of the work is done. It hosts all
the NestJS controllers, modules, services, pipes, guards,
middlewares etc. Note that, scripts other than NestJS specific
shouldn’t be put here.

	app.module.ts

The root module of the application. All other modules are
imported into this file.

	main.ts

The entry file of the application which uses the core function
NestFactory to create a Nest application instance.

	mail

This directory hosts the module used for sending mails in this
application. To send a mail, a view is created inside the views
directory. The MailModule is imported into the current
module and the MailService is injected into the current
service. Using the sendMailByView method of the mail
service emails can be sent using sendgrid.

	[module_name]

The src directory hosts all the nestjs modules in this
application. To create a new module, a new directory with the
same name is created. It is recommended that the nest cli is
used to generate modules, controllers, services etc. The nest
cli command nest g module [module_name] generates a new
module. This creates a new directory inside the src folder and
a new module named [module_name].module.ts. All directories
created inside this must not be empty.

	decorators

All decorators for this module is created in this directory.

	dto

All dtos for this module is created in this directory. A DTO
is an object that defines how the data will be sent over the
network. This is especially useful in POST and PUT
requests. The class validator decorators can also help in
validating payload fields. All dtos must end with
.dto.ts.

	pipes

All pipes for this module is created in this directory.
Pipes are used to transform input data coming from
req.body, req.query or req.params etc. All pipes
must end with .pipe.ts

	guards

All guards for this module is created in this directory.
Guards determine whether a given request will be handled by
the route handler or not, depending on certain conditions
(like permissions, roles, ACLs, etc.) present at run-time.
All guards must end with .guard.ts

	interfaces

All interfaces for this module is created in this directory.
Note: All interface must be declared using class but
not the interface keyword. This is because Typescript
removes all interfaces when it is compiling to Javascript.
All interfaces must end with .interface.ts

	exceptions

All exceptions for this module is created in this directory.
Nest comes with a built-in exceptions layer which is
responsible for processing all unhandled exceptions across
an application. When an exception is not handled by your
application code, it is caught by this layer, which then
automatically sends an appropriate user-friendly response.
All exceptions must end with .exception.ts

	controllers

If multiple controllers are used in this module, it is
recommended to put them in the controllers directory. Otherwise
there is no need to create this directory for them. All
controllers must end with .controller.ts

	controllers

If multiple services are used in this module, it is recommended
to put them in the services directory. Otherwise there is no
need to create this directory for them. All services must end
with .service.ts

[module_name].module.ts

This is the file that all providers, controllers etc of this
module are imported into. This is then imported into the
app.module.ts

	ormconfig.ts

This is the file that contains all the configuration of the
application’s database. It is used by typeorm to create migrations
and connect to the database.

	tsconfig.json

This is the file that contains the typescript configuration for
the server. The configuration used in this app is in strict mode.

	src

This is where most frontend work is done in this app.

	App.tsx

This is the main component that loads the app routes and run
initial scripts (eg. retrieving current user)

	assets

This directory contains all the static assests used in the app

	components

This directory contains most of the helper components used in the
app

	config

This directory contains all the configuration files of the app

	helpers

This directory contains all the utilities functions of the app

	hooks

This directory contains all the general react hooks used in the
app

	index.tsx

This is the main script and starting point of the app responsible
for bootstrapping the react app

	layers

This is the directory where layers (modals) used in the app are
stored

	models

This is the directory where typescript types used accross the
entire app are declared.

	pages

This is the directory where pages served in the browser are stored

	Private

All Privates Pages are stored in this directory.

	Public

All Public Pages are stored in this directory.

	react-app-env.d.ts

This is a generated file coming with create react app

	routes.ts

This is the file where all public and private routes are
decalared. All public and private routes live in the publicRoutes
and privateRoutes array respectively. Make sure you put the route
in the correct context. All private routes require that users are
authenticated, otherwise they will be redirected to the login page

	scss

The directory that hosts all the scss for the app

	store

This is the directory that is used to handle everything to do with
the app’s redux store.

	actions

All actions of the store are declared in this directory. Every
action ends with .action.ts. This is to make all actions
easier to search. Also all action functions end with
Action.

	constants

All constants used in the store is declared in this directory.
End all constants with .constant.ts. This is to make all
constants easier to search.

	reducers

All reducers of the store are declared in this directory. Every
reducer ends with .reducer.ts. This is to make all reducers
easier to search.

	services

All services of the store are declared in this directory. Every
service ends with .service.ts. This is to make all services
easier to search. The http helper function must be used to
make http requests

	store.ts

This is the script that creates the main store of the app.

	types

All typescript types of the stored are declared in this
directory. Every type file ends with .types.ts. This is to
make all types easier to search.

	tsconfig.json

This is the file that contains the typescript configuration for
the app. The configuration used in this app is strict

	scripts

Server run and build commands are included in this folder files
for installing requirements and ci cd auto deployment.

	appspec.js

file contains scripts files calls for ci cd auto deployment into
aws instance

Contribution

How do you contribute to Purpie

We would very much like your request to improve Purpie so please read and follow this contributions manual before you start working.

Create and Report Issues

You should give us as much as possible details about the problems and how to reproduce these issues. Also, give us more detail about version of the Purpie you are using and development environment.

Contributor License Agreement

The Purpie projects are licensed under the Apache License 2.0 [https://github.com/doganbros/purpie/blob/develop/LICENSE] so you need to sign our Apache-based contributor license agreement as either an individual or a corporation to continue making these projects available under an Open Source license. If you do not accept this agreement then sadly, we cannot accept your contribution.

	If you are an individual please sign the form here. [https://powerforms.docusign.net/25f9e86f-c3ed-4046-a84c-ea47d044ddfa?env=na4&acct=247e2141-0ba7-4f55-934a-a81d35370124&accountId=247e2141-0ba7-4f55-934a-a81d35370124]

	If you are a corporation, please sign the form here. [https://powerforms.docusign.net/8a01cd33-4e62-49bd-912a-703760df769a?env=na4&acct=247e2141-0ba7-4f55-934a-a81d35370124&accountId=247e2141-0ba7-4f55-934a-a81d35370124]

Pull Request Strategy

	Make sure your code passes the linter rules that are executing automatically when creating pull request.

	Purpie is a monorepo project so perform only frontend or backend change with one logical operation per pull request.

	Cleanly message your commits, squash them if necessary.

	Rebase your working branch on top of the develop branch before starting the coding.

Coding style

Comments

	Comments documenting the source code are required.

	Comments should be formatted as proper English sentences.

Duplication

	Copy-paste source code is not allowed, you can reuse it.

Formatting

	There are some prettier packages with eslint in the codebase, so you need to adjust your editor with Purpie settings.

Naming

	Util function names camelCase, file names kebab-case and react file and component names PascalCase format in the Purpie.

	The names of global constants (including ES6 module-global constants) should be written in uppercase with underscores to separate words. For example, BACKGROUND_COLOR.

License

Purpie is open-source and is released under the Apache License 2.0. [https://github.com/doganbros/purpie/blob/develop/LICENSE]

Index

Template

$project will solve your problem of where to start with documentation,
by providing a basic explanation of how to do it easily.

Look how easy it is to use:

import project
Get your stuff done
project.do_stuff()

Features

	Be awesome

	Make things faster

Installation

Install $project by running:

install project

Contribute

	Issue Tracker: github.com/$project/$project/issues

	Source Code: github.com/$project/$project

Support

If you are having issues, please let us know.
We have a mailing list located at: project@google-groups.com

License

The project is licensed under the BSD license.

Sphinx cheatsheet Sub-header

A brief overview of some of the main functions of Sphinx
as used in the aiida documentation. View This Page to see
how this page was formatted. This is only a brief outline for more
please see the Sphinx documentation [http://sphinx-doc.org/contents.html]

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting

Words can be written in italics or in bold. Text describing a specific
computer_thing can be formatted as well.

Paragraph and Indentation

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will
appear on the same line.

	While this sentence will appear
	differently because there is an indent.

Terminal and Code Formatting

Something to be run in command line can be formatted like this:

>> Some command

As can be seen above, while snippets of python on code can be done like this:

import module
print('hello world')

Notes

Note

Notes can be added like this.

Bullet Points and Lists

	Bullet points can be added

	Just like this
* With sub-bullets like this

	While numerical bullets

	Can be added

	Like this

Links, Code Display, Cross References

External Links

Can be done like here for AiiDA

Code Download

Code can be downloaded like this.

Download: this example script

Code Display

Can be done like this. This entire document can be seen unformated below using this method.

Math

Math formulas can be added as follows \(<g_i|\), see
the Sphinx documentation on math [http://sphinx-doc.org/latest/ext/math.html#module-sphinx.ext.mathbase]

Cross Reference Docs

Here is an example of a reference to the structure_tutorial which is on another page

Here is an example of a reference to something on the same page, Math

Note

References within the same document need a reference label, see .. _self-reference:
used in this section for an example. Hidden in formatted page, can only be seen in the
input text.

Cross Reference Classes and Methods

Any class can be referenced for example StructureData references the
StructureData data class.

Similarily any method can be referenced for example append_atom()
shows the StructureData class’ append atom method.

Table of Contents Docs and Code

Table of Contents for Docs

An example of the table of contents syntax for the git-cheatsheet can be seen here
note that these are especially important in the global structure of the
document, as found in index.rst files.

Note

The maxdepth parameter can be used to change how deep the title indexing goes. See This Page.

Table of Contents for Code

Table of contents, that cross reference code, can be done very similarly to how
it is done for documents. For example the parser docs can be indexed like this

Automodules Example

Note

A :noindex: directive was added to avoid duplicate object
description for this example. Do not put the keyword in a real
documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax used here,
a few extra examples of use would include:

:param parameters: some notes on input parameters

:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

Changing The Docs

When creating a new .rst file, please:
the relevant index.rst tree. This can be done by:

	Modify relevant doc strings or .rst files in
the /docs/source/ folder, not in /docs/build

	Make sure that all relevant .rst files are added
to relevant index.rst files (table of contents)

	Run make all in the /docs/ folder

	Fix warnings, if any

This Page

 nav.xhtml

 Table of Contents

 		
 Purpie Overview

_static/file.png

_images/purpie_system_architecture.png
Stream & Rec.

Ingress Server

Engress Servers

_static/minus.png

_static/plus.png

